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LEITER TO THE EDITOR 

Critical point analysis of various fermionic field theories in the 
large N expansion 

J A Graceyt 
Forskningrintitutet fbr Teoretisk Fysik, Helsingfon Universitet, Brobergsterrassen ZOC. 
Helsingfors, Finland SF-00170 

Received 18 November 1991 

Abstnet. We compute the critical exponents corresponding to the anomalous dimensions 
of the fields and vertices in a model involving fermions with a four point interaction, 
coupled to a U(]) gauge field, at O i l /  N )  in a large N expansion in arbitrary dimensions. 
We also discuss the QED Ward identity within this formalism. 

The large N expansion has been widely used to examine the quantum properties of 
field theories with an internal symmetry. Instead of analysing the models in the low 
coupling limit (perturbation theory) one treats the parameter I/N as a coupling 
constant with N large. Consequently, one can carry out a leading order analysis by 
renormalizing Green functions, using, say, dimensional regularization, and sub- 
sequently deducing the appropriate functions occurring in the renormalization group 
equation. However, in the conventional approach, it is not possible to go beyond the 
leading order due to the occurrence of intractable integrals. Instead one uses a different 
method, developed in [ 1.21 for the bosonic O( N )  U model and subsequently applied 
to other models in [3,4]. Here, one analyses the models at the d-dimensional critical 
point of the theory, where the mass vanishes, which essentially allows one to compute 
the integrals which arise at the next order. One consequence is that information on 
the coefficients which appear in the renormalization group functions of perturbation 
theory can be determined to all orders, at the particular large N approximation. 

Recently, the techniques of [ 13 have been applied to quantum electrodynamics 
(QED) in [4], where the electron anomalous dimension in the Landau gauge was 
deduced from a consistency equation at leading order, which is related to a critical 
point analysis of the Dyson equations. To go beyond this order in an analogous fashion 
to [2], one encounters a much more intricate and complicated analysis. As a first step 
in attempting such a calculation, we require an independent determination of the vertex 
anomalous dimension which occurs. Usually it is deduced at 0 ( 1 / N )  by considering 
the bare consistency equation at O(l /N2)  [l]. After a suitable regularization has been 
introduced, this quantity is defined in such a way that the finite consistency equation 
is independent of position or momentum variables. Further, rather than just consider 
QED, we will analyse a more general model, which, in addition to a U(1) gauge field 
coupled to fermions, includes a four fermi interaction. Such a model has recently been 
analysed in strictly three dimensions in [SI, and so it is of interest to provide further 
results both beyond the leading order in large N and also to determine the critical 
exponents in arbitrary dimensions. Further, there has been recent interest in examining 
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four fermi interactions near four dimensions within the large N expansion, both in 
models with this type of interaction and also in models where the fermions have 
additional types of coupling [6]. 

We begin by first deriving the consistency equation for 7, the anomalous dimension 
of the fermion +’, 1 s i < N, where we use the (massless) Lagrangian 

The field A, corresponds to a U( 1) gauge field and p is an auxiliary scalar field which, 
if eliminated by its equation of motion, yields the four fermi interaction. The coupling 
constants, e and g, have been rescaled into the relevant kinetic terms as a first stage 
in the application of the methods of [l], and we have set F,. = J,A, -d,A,. To fix 
notation, we introduce the asymptotic scaling functions for the propagators of each 
field, in momentum space, using the name of the field to denote the function 

where A, B and C are the amplitudes of the functions and (I, fi  and y are the exponents 
of the respective fields. From a dimensional analysis of ( l ) ,  [ l ,  41, they are defined by 

a = p + f T  P = 1 - 1) - x, = 1 - 1) - X A  (3) 
where d = 2p is the dimension of spacetime, 1) is the (gauge-dependent) anomalous 
dimension of the fermion and ,yo and xa are the anomalous dimensions of the respective 
vertices of (1 ) .  As in [4,7], we choose to calculate in the Landau gauge and have taken 
A,,(k) accordingly. 

As a preliminary to computing ,yo and xA, we require not only an expression for 
1). but also equations for the amplitudes A, B and C. They are deduced by solving the 
skeleton Dyson equations with dressed propagators, truncated to the appropriate order 
in large N, at the non-trivial d-dimensional critical point of the theory [l]. The 
asymptotic scaling functions of the two point functions, which appear in the Dyson 
equations, are given by the inverses of (2) in momentum space, where A,, is inverted 
on the transverse subspace [7,8j. Thus from the Dyson equations of figure 1, where 
we substitute (2) for the lines comprising the one loop graphs and carry out the simple 
integrations, we have respectively, 

Figure 1. Skeleton Dyson equations with dressed propagators 
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zNta 
(@-a -1) 

0=1- u ( p -  (I - 1, p-a ,  Za+l)  

ZyNta2 
0=1+ u ( p - n  -1, p - ( I ,  Za +1)  

( p - a  -1)(2a + I )  

where u ( n , , a , , a J = a ’ I I ~ _ ,  a(.,), with a ( a ) = r ( p - a ) / r ( a ) .  Also we have set 
z = A2B and y = A2C. The manipulation of the y-matrices is performed purely with 
{y”, y ’ }  = 2q”, which is valid in arbitrary dimensions and we use the convention 
tr 1 = t, to allow for t = 2 or 4 depending on the dimension of the representation of 
the y-matrices one chooses. First, eliminating y and t from (4)-(6) and using (3), we 
find 

In three dimensions, q = -S/( Nta’), which agrees with the explicit result of [5], which 
is a check on our calculation. With (7), we obtain the following expressions for y 
and 2, 

To deduce x, and x,,, which we will require for checks on an 0(1/ N z )  computation 
of 7 in both QED and ( I ) ,  we adapt the approach of [9], which was applied to U 
models on Grassmannian spaces in [lo, 111. In  [9], the vertex anomalous dimensions 
are deduced directly from the 3-point functions rather than an O( I /  N 2 )  renormalization 
of the corrections to the q self-consistency equation. First, to regulate the divergences 
which will arise in computing the one loop graphs, we shift the exponents of both the 
p and A,. fields by an amount A, i.e. p + p - A ,  y + y - A.  Then from general arguments 
given in [9, IO], the full p&+ vertex, for instance, at criticality is equivalent to - x P / ( 2 A ) .  
Thus, an expression for x , ,  to leading order, can be obtained by computing the leading 
order graphs explicitly, using (Z), with the regularized exponents. The relevant graphs 
for x p  and xn are given in figures 2 and 3, where to this order in 1/N there are no 

Figure 1. Corrections 10 P&$ venex. 
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Flgure 3. Corrections lo A,&Y$ vcnex 
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three loop graphs due to Furry's theorem for gauge theories and its modification for 
the model (1). The graphs are analysed with (2). where a non-zero momentum, p, flows 
through the fermion legs only. Using, for instance, the chain rule of [Z], and with 
a = p, p = y = 1, figure 2 is equivalent to 

An arbitrary mass scale m enters at each vertex of ( 1 )  to take account of the change 
in dimension due to the introduction of the regulator [9]. Only the residues of the 
poles with respect to A in (9) contribute to ,yo. Thus, 

(4p2 - 6 ~  +3)  
"= -(4p2- lOp+5) 7 

and when d = 3, ,yo = -24/( N d ) ,  which agrees with [5]. 
Similarly, xA is deduced by considering the graphs of figure 3, where the pole part 

has to be equivalent to -ym,yA/(2A). The y-matrix arises, of course, due to Lorentz 
symmetry. The second graph of figure 3 is easy to compute, whilst the first can be 
simplified by using 

- (a + p  - p - Z ) v ( o  - 1, p - 1, Zp- a - p  +2) 
2(u -1)(P - l)(p')~+'--p-' 

- 

for arbitrary values of a and p.  Of course, in calculating the first graph of figure 3, it 
will have the structure Py"+ Q#y"p/p2 from general considerations, where P and Q 
are dimensionless quantities depending only on p, A and the exponents. Therefore, 
we must ensure that there are no pole pieces arising in the second term, Q, which 
would otherwise spoil the renormalizability of the theory [lo]. The explicit calculation, 
with a = p, /3 = y =  1, gives 

~ ( p -  1 +A,  1, p+ 1 - A )  ~ ( 1 - A )  
( c ~ - l + A )  

Thus it is easy to see there is no divergent contribution to Q. Adding the analogous 
expression from the second graph, the pole pieces with respect tu J rearrange to give 
y"q,/(2AN), where q =E=, q J N ' .  Thus, 

xA=-T  (13) 

at this order in 1/N for (1 ) .  
If one considered QED only and ignored the second interaction of ( l ) ,  then we 

would have 

X 2 E D = -  7 QED (14) 
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where [4] 

The result (14) is consistent with the Ward identity of QED. More precisely, in (1) we 
have absorbed the coupling constant, e, into the definition of the gauge field to ensure 
the vertices have unit coupling, required by the method [l]. If one were to carry out 
an  explicit perturbative renormalization of QED, then denoting bare quantities with a 
subscript 0, A: is related to the renormalized field A' by 

where we use the conventional notation for the renormalization constants Z,. (See, for 
example, [12].) However, the Ward identity implies Z ,  = Z ,  to all orders in perturbation 
theory and therefore there is no wavefunction renormalization of the field A, of QED, 

in our definition of the gauge field. In other words, A, has zero anomalous dimension, 
which, from (3), implies ,yXED = -nQEO. In determining this explicitly at leading order, 
(14), which provides us with a check on the computation, we have verified the Ward 
identity holds to all orders within this large N approximation. Including the four fermi 

We conclude by noting that we have solved (1) at leading order in large N by 
giving analytic expressions for the critical exponents of the fields of the model ( I ) ,  in 
arbitrary dimensions. Further, the formalism which has been introduced will serve as 
a basis for going beyond this leading order to calculate the O(l /N2)  corrections to 
various exponents both for QED and the model ( I ) ,  which we hope to return to later. 

We thank Dr P Gang6  and other members of the theory division, CNRS, Cronenbourg, 
Strasbourg, where part of this work was carried out, for their interest and hospitality. 
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